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Abstract
Recently, the integrability of the stationary Kirchhoff equations describing an
elastic rod folded in the shape of a circular helix was proven. In this paper
we explicitly work out the solutions to the stationary Kirchhoff equations in
the presence of a long-range potential which describes the average constant
force due to a Morse-type interaction acting among the points of the rod.
The average constant force results to be parallel to the normal vector to the
central line of the folded rod; this condition remarkably permits to preserve the
integrability (indeed the solvability) of the corresponding Kirchhoff equations if
the elastic rod features constant or periodic stiffnesses and vanishing intrinsic
twist. Furthermore, we discuss the elastic energy density with respect to
the radius and pitch of the helix, showing the existence of stationary points,
namely stable and unstable configurations, for plausible choices of the featured
parameters corresponding to a real bio-polymer.

PACS numbers: 02.30.Ik, 02.30.Zz, 62.20.D−, 81.05.Lg, 87.15−v

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The description of polymers and bio-polymers at different space- and time-scales is a subject
of increasing interest in view of their paramount role in several fields of life and material
sciences [1–3]. As a matter of fact, atomistic simulations are providing a wealth of results
for short-time dynamics of model systems [2, 4, 5]. However, despite the terrific advances
of computer power and software efficiency, long-time phenomena such as protein folding or
phase transitions remain outside the limits of such approaches. On the other hand, analytical
models based on classical elasticity theory [6–8] do not suffer from space or time limitations,
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but often involve such an amount of idealization that a direct connection with experiments
is lost. In order to fill this gap, we have started a comprehensive research program aimed to
provide a direct link between atomistic simulations and analytical models. The first step is the
development of a model including the essential features of complex systems such as natural
copolymers or proteins, namely shape and elasticity variations along the backbone together
with a proper description of long-range steric and specific intra-chain interactions. Reliable
treatments of shape and elasticity variations along the chain have been dealt with in the previous
studies [9, 10]. Here we will be concerned with the inclusion of long-range interactions and
with their tuning effect on the chain characteristics issuing from intrinsic elastic properties.
While the overall structure of polymeric materials is further tuned by other specific interactions
(e.g. hydrogen bonds, inter-chain and solute–solvent interactions, etc), it is well known that the
behavior of several polymers in low-polarity solvents is dominated by the intra-chain short-
and long-range interactions included in our model; under these circumstances, the electrostatic
effects are negligible. In any case, as shown in [11, 12], a qualitative change in the geometrical
configuration of the polymer is not expected when the electrostatic screening is supposed to
be uniformly distributed along the chain. These conditions are respected by a large class of
synthetic polymers of technological relevance and by many proteins. Clearly, the electrostatic
effects cannot be neglected in the case of the DNA (which contains charged phosphates) and
of the hydrophobic regions of proteins in physiological conditions.

Proper inclusion of these and other specific interactions requires a deeper understanding
of the basic behavior underlying those features. Moreover, temperature and non-homogeneous
mechano-chemical properties play no role in our description, e.g. see [13]. As a matter of
fact, different helical and/or semi-extended structures can be obtained by simply tuning local
elastic properties and long-range steric interactions [1], thus offering a demanding playground
for analyzing the reliability of any general model. We show that a qualitative description
of some fundamental features of the many molecular systems our model applies to can be
achieved through explicit analytical solutions (in the sense of integrable systems) of Kirchhoff
equations, without recurring to numerical simulations. This is the reason why we think that
the present study can represent a significant step toward a more general and effective treatment
of macromolecules of natural and synthetic origin.

In the next section we introduce a long-range interaction in the elastic rod model and
then derive the static Kirchhoff equations in the presence of an external force in section 3. In
section 4 we solve the system of Kirchhoff equations in the case of circular helices, through
an inverse problem approach, obtaining the elastic stiffnesses and the explicit components of
the external force. Finally sections 5 and 6 are devoted to the example of a specific long-
range interaction. We discuss a Morse-type potential and the corresponding energy density
landscape of the rod, which shows the appearance of minima configurations for realistic values
of the parameters characterizing the interaction.

2. The long-range interaction on a circular helix

We start our analysis by discussing how to describe a long-range interaction among the points
of the rod.

In a given reference frame O, let us consider a circular helix parametrized by the vector
function �P : R −→ R

3:

�P(t) = {r cos t, r sin t, ct}, (1)

where r is the helix radius and c = p

2π
, p being the pitch. Curve (1) represents the central line

of the elastic rod.
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Figure 1. The elastic rod in the circular helix configuration.

Making use of the Frenet relations (see for instance [14]), we can define the normal �N(t),
the binormal �B(t) and the tangent �T (t) vectors to the given curve �P(t) (see figure 1):

�N(t) =
�̇T (t)

| �̇T (t)|
= {− cos t,− sin t, 0}

�B(t) = �T (t) × �N(t) =
{

c sin t√
c2 + r2

,− c cos t√
c2 + r2

,
r√

c2 + r2

}

�T (t) =
�̇P(t)

| �̇P(t)|
=

{
− r sin t√

c2 + r2
,

r cos t√
c2 + r2

,
c√

c2 + r2

}
,

(2)

where · indicates the derivation with respect to the angular parameter t, and × is the usual
cross product between vectors in R

3.
In order to define a proper long-range interaction of the helix, we consider the following

force field �F (long)(t, t ′) acting between the points �P(t) and �P(t + t ′) of the central line of the
rod (see figure 2):

�F (long)(t, t ′) = �(| �X(t, t ′)|)
�X(t, t ′)

| �X(t, t ′)| (3a)

�X(t, t ′) = �P(t + t ′) − �P(t), (3b)

where

�(x) = − d

dx
V (x) (4)

can be expressed in terms of the derivative of a suitable potential function V (x) (see below).
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Figure 2. Force field between two points of the helix.

When discussing the long-range interaction force, it is important to observe that we do
not take into account the physical dimensions (height and width) of the cross section of the
rod, namely we assume that these are negligible with respect to the total arc-length of the rod,
placing the force vectors on the centroids of the cross sections (i.e. the intersection between
the central line �P(t) and a section of the rod with a plane perpendicular to �P(t)).

For a circular helix described by (1), we have

| �X(t, t ′)| ≡ X(t ′) =
√

2r2[1 − cos t ′] + (ct ′)2, (5)

which depends on the angle difference t ′ = (t +t ′)−t . The three components of the long-range
interaction force �F (long)(t, t ′) in the fixed reference frame O are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F
(long)

1 (t, t ′) = r[cos (t + t ′) − cos t]

X(t ′)
�(X(t ′))

F
(long)

2 (t, t ′) = r[sin (t + t ′) − sin t]

X(t ′)
�(X(t ′))

F
(long)

3 (t, t ′) = ct ′

X(t ′)
�(X(t ′)).

(6)

As suggested in [7, 8], for a rod of infinite length whose coarse-grained structure is
described by an elastic continuous model, the resultant force �F (ext)(t) acting on a point �P(t)

of the helix (1) is obtained integrating (6) as t ′ ∈ (−∞, 0−) ∪ (0+,∞) and keeping into
account the contributions due to the simultaneous interaction of �P(t) with the points �P(t + t ′)
and �P(t − t ′) (namely we need to perform two ‘symmetric’ integrations as t ′ ∈ (0+,∞) and
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t ′ ∈ (0−,−∞)):

�F (ext)(t) =
∫ ∞

0+
[ �F (long)(t, t ′) + �F (long)(t,−t ′)] dt ′, (7)

where we assumed that the function �F (long)(t, t ′) is continuous in t ′ = 0 and the symbols 0+

and 0− have been introduced to avoid the interaction of the point �P(t) with itself.
On the other hand, for rods of finite length, we do not expect negligible border effects as

discussed in [8]. In the following we focus on rods of infinite length, while the problem of
rods of finite length will be the subject of future investigation. At this stage, it is worth noting
that many natural and synthetic macromolecular systems are a compound of regular regions
connected through disordered regions. Thus, a realistic model must necessarily be piecewise
regular. However, in many cases, the regions characterized by a total regularity (like the
α-helices or the β-strands) are so long that it is reasonable to assume their length to be infinite.
This is also why, in the present paper, we focus only on helical (and degenerate-helical)
configurations, see section 4.

The three components of �F (ext)(t) in the reference frame O, via (6) and (7), reduce to⎧⎪⎪⎨
⎪⎪⎩

F
(ext)
1 (t) = −F cos t

F
(ext)
2 (t) = −F sin t

F
(ext)
3 (t) = 0,

(8a)

where

F = 2r

∫ ∞

0+

1 − cos t ′

X(t ′)
�(X(t ′)) dt ′. (8b)

By comparing (2) with (8a)–(8b), we observe that the resultant force �F (ext)(t) acting on
�P(t) has constant modulus | �F (ext)(t)| = |F | and its direction is parallel to the normal vector
�N(t).

It is thus possible to determine the distributed force �f (t) (i.e. the load) due to the presence
of the external force (8a), (8b), acting on each single point �P(t). Taking into account the local
character of �F (ext)(t), we recall that the total force applied to a finite portion of the rod [0, T ]
is obtained by integrating the external force �F (ext)(t) with respect to the angular parameter
t ∈ [0, T ]. Then the load is defined as the derivative of the total force with respect to the
arc-length s (see [15]),

�f (t) = d

ds

∫ t

0

�F (ext)(t ′) dt ′ = 1√
c2 + r2

�F (ext)(t), (9)

considering that s = t
√

c2 + r2 as implied by (1). It is worth noting that from (9) it follows
that the physical dimensions of the load �f are [N/m].

3. Kirchhoff equations for elastic rods in the presence of an external force

In this section we resume the main features of the static Kirchhoff model for an elastic rod, see
[17, 18]. We follow [9] as a guideline, but we introduce in the model an additional long-range
interaction force �F (ext)(s), see (8a) and (8b), proving analytically the statements formulated
in [8]. This additional force, �F (ext)(s), can be regarded as an external load (distributed force)
acting on all the points of the rod, see (9).

An elastic rod is a deformable three-dimensional object whose length in the longitudinal
direction is assumed larger than its length along the transverse direction; while the longitudinal
width could be finite or infinite, the transverse one is always finite.
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As explained in [9], this model considers deformations of the elastic rod due to bending
and torsion and does not allow deformations along the longitudinal direction due to shear,
extension and compression.

Let us define a smooth curve in ordinary Euclidean space R
3,

�r : I ⊆ R −→ R
3, (10)

passing through the centroids of the cross sections of the rod and where s ∈ I is the arc-length
parameter.

In order to describe the position of a generic cross section, it is useful to introduce a
generalized orthonormal Frenet frame { �d1(s), �d2(s), �d3(s)}, where �d1(s) and �d2(s) define the
plane of the transverse section and �d3(s) is tangent to the curve �r(s) under the assumption of
unshearability. The variation of the �di(s)’s, i = 1, 2, 3 with respect to the arc-length is given
in terms of the Darboux vector �k(s):

�k(s) =
3∑

i=1

ki(s) �di(s), (11)

where k1(s) and k2(s) are associated with the bending and k3(s) to the torsion, in such a way
that

d �di(s)

ds
= �k(s) × �di(s), i = 1, 2, 3. (12)

For all s ∈ I , it is possible to define the Frenet basis { �N(s), �B(s), �T (s)} constituted by
the normal, binormal and tangent vectors to the curve �r(s). The generalized and the usual
Frenet frame are related by a rotation of an angle ϕ(s) around �d3(s):⎧⎪⎨

⎪⎩
�d1(s) = cos ϕ(s) �N(s) + sin ϕ(s) �B(s)

�d2(s) = −sin ϕ(s) �N(s) + cos ϕ(s) �B(s)

�d3(s) = �T (s).

(13)

Following the terminology introduced in the study of DNA [16], we denote the angle ϕ(s)

as the register. We recall that, under the assumptions of unshearability and unexstensibility,
the geometric configuration of the elastic rod is completely described once the components of
the Darboux vector �k(s) are assigned:⎧⎪⎪⎨

⎪⎪⎩

k1(s) = κ(s) sin ϕ(s)

k2(s) = κ(s) cos ϕ(s)

k3(s) = τ(s) +
dϕ(s)

ds
,

(14)

where

κ(s) =
∣∣∣∣∣
d �T (s)

ds

∣∣∣∣∣ and τ(s) = − 1

κ(s)

d �T (s)

ds
· d �B(s)

ds
(15)

are, respectively, the curvature and the torsion of �r(s), assumed to be functions of s, while
dϕ(s)

ds
is the intrinsic twist, that is a measure of the difference between the twist density and the

Frenet torsion, see [6].
In the absence of external momenta and in the presence of an external load

�f (s) =
3∑

i=1

fi(s) �di(s), (16)

6
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at the equilibrium, we obtain the static Kirchhoff equations⎧⎪⎪⎨
⎪⎪⎩

d �F(s)

ds
+ �f (s) = 0

d �M(s)

ds
+ �d3(s) × �F(s) = 0,

(17)

which involve the resultant of elastic stresses

�F(s) =
3∑

i=1

Fi(s) �di(s)

and the resultant torque

�M(s) =
3∑

i=1

Mi(s) �di(s)

acting on the cross section at �r(s).
The torque �M(s) is related to the strain variables by the following relationship:

�M(s) = a1(s)k1(s) �d1(s) + a2(s)k2(s) �d2(s) + b(s)k3(s) �d3(s), (18)

where the functions a1(s) and a2(s) are the bending stiffnesses and are a measure of the
asymmetry of the cross section, whereas b(s) is the torsional stiffness, that is the response of
the rod to the twist stress, see [9]. It is worth noting that these three quantities, when regarded
as functions of the arc-length s, must be real, positive and bounded.

Projecting equations (17) in the { �di(s)}i’s frame and using (18), we obtain the Kirchhoff
system for the six unknowns (k1, k2, k3) and (F1, F2, F3), regarded as functions of the arc-
length s: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F ′
1 + k2F3 − k3F2 + f1 = 0

F ′
2 + k3F1 − k1F3 + f2 = 0

F ′
3 + k1F2 − k2F1 + f3 = 0

F2 + (a2 − b)k2k3 − a1k
′
1 − k1a

′
1 = 0

F1 + (a1 − b)k1k3 + a2k
′
2 + k2a

′
2 = 0

k′
3b + k3b

′ − (a1 − a2)k1k2 = 0.

(19)

The energy density corresponding to a thin elastic rod described by (19) (see [6, 17–20])
is given by

E = 1
2

[
a1k

2
1 + a2k

2
2 + bk2

3

]
+ F3. (20)

The first term in (20) is the contribution due to bending and torsional deformations, while
the last term is due to the presence of body forces along the rod. It is important to observe
that E has the physical dimensions of an energy per unit of length, namely the dimensions of
a force.

For the helical configuration described by (1) and under the assumption κ �= 0, the total
deformation energy is

E =
∫ ∞

−∞
E ds, (21)

keeping into account the translation invariance with respect to the arc-length s of
equations (19). For a detailed treatment of the case κ = 0, we refer the reader to [10].

7
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4. Inverse problem approach

Since most of the polymers we are interested in (i.e. α-helices, 310-helices, β-strands, etc)
are folded as circular helices, in the following we will concern ourselves with circular helical
solutions of (19). We recall that a circular helix is characterized by a constant curvature,
torsion and, hence, constant pitch. Furthermore, in this paper we focus on the vanishing
intrinsic twist case, namely we set ϕ(s) = ϕ0.

Similarly to [9], we formulate the following inverse problem: we assign constant values
to κ(s) and τ(s):

κ(s) ≡ κ, τ (s) ≡ τ, (22)

and solve (19) for the six unknowns a1(s), a2(s), b(s), F1(s), F2(s), F3(s), with assigned
initial conditions at a specific value s0 ∈ I of the arc-length. Since all the equations in (19)
are autonomous and invariant under translation with respect to s, here on we set s0 = 0.

The long-range interacting model so far introduced can be regarded as a good
approximation of those physical configurations featuring a constant register, since the force
vectors describing the long-range interaction are placed on the centroids of the cross sections.
In contrast, if the register varies with the arc-length, the hypothesis of neglecting the physical
dimensions of the cross section (which allows us to approximate the interaction of the
boundaries of the cross sections with the interaction of the corresponding centroids) is generally
no longer valid. In this paper we mainly focus on the constant register case, postponing the
detailed analysis of non-vanishing intrinsic twist to future works. It is worth noting that
setting the register ϕ(s) = ϕ0 entails, via (22), that (19) is a system of linear ODEs in the
six unknowns a1(s), a2(s), b(s), F1(s), F2(s), F3(s), whose solutions are presented below,
following the classification scheme introduced in [9].

4.1. Constant register solution for τ �= 0 and κ �= 0

If the curvature and the torsion are different from zero, then the helix is non-degenerate. From
parametrization (1), we obtain that

κ = r

r2 + c2
and τ = c

r2 + c2
. (23)

It is expedient to split this case into three subcases, depending on whether ϕ is an (even
or odd) integer multiple of π

2 or not.

4.1.1. ϕ(s) ≡ π
2 + nπ, n ∈ Z. Under this assumption the solution of (19) reads as follows:
⎧⎨
⎩

a1(s) = a0

a2(s) ∈ C1(R)

b(s) = b0

(24a)

⎧⎪⎪⎨
⎪⎪⎩

k1(s) = (−1)n
r

c2 + r2

k2(s) = 0

k3(s) = c

c2 + r2

(24b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1(s) = (−1)n
cr

(c2 + r2)
2 (b0 − a0)

F2(s) = 0

F3(s) = c2

(c2 + r2)
2 (b0 − a0) + (−1)n

(
c2

r
+ r

)
f2,

(24c)

8
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where f1, f2 and f 3 are the components of the load vector, as in (16), f 2 is constant and f 1

and f 3 satisfy the following condition:{
f1 = 0
f3 = 0.

(24d)

We recall that a0 = a1(0) and b0 = b(0) are arbitrary real positive constants. Furthermore,
a2(s) is an arbitrary real positive smooth function of the arc-length s.

In this case it is important to underline that (24d) entails that the integrability of (19) is
guaranteed only if the vector �f features a single component along �N , as can be easily seen by
recalling that setting ϕ = π

2 + nπ , via (13), implies �d1 = (−1)n �B and �d2 = (−1)n+1 �N . This
is indeed the case of the load vector �f described in (8a)–(8b) and (9).

Via (20) the elastic energy density is

E = a0r
2 + (3b0 − 2a0)c

2

2 (c2 + r2)
2 + (−1)n

(
r +

c2

r

)
f2, (25)

where we recall that f 2 generally might depend on r and c.

4.1.2. ϕ(s) ≡ nπ, n ∈ Z. Under this assumption the solution of (19) reads as follows:

⎧⎨
⎩

a1(s) ∈ C1(R)

a2(s) = a0

b(s) = b0

(26a)

⎧⎪⎪⎨
⎪⎪⎩

k1(s) = 0

k2(s) = (−1)n
r

c2 + r2

k3(s) = c

c2 + r2

(26b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1(s) = 0

F2(s) = (−1)n
cr

(c2 + r2)2
(b0 − a0)

F3(s) = c2

(c2 + r2)2
(b0 − a0) + (−1)n+1

(
c2

r
+ r

)
f1

(26c)

with the condition{
f2 = 0
f3 = 0.

(26d)

We recall that a0 = a2(0) and b0 = b(0) are arbitrary real positive constants. Furthermore,
a1(s) is an arbitrary real positive smooth function of the arc-length s.

In this case it is important to underline that (26d) entails that the integrability of (19) is
guaranteed only if the vector �f features a single component along �N , as can be easily seen
by recalling that setting ϕ = nπ , via (13), implies �d1 = (−1)n �N and �d2 = (−1)n �B. This is
indeed the case of the load vector �f described in (8a)–(8b) and (9).

Via (20) the elastic energy density is

E = a0r
2 + (3b0 − 2a0)c

2

2(c2 + r2)
2 + (−1)n+1

(
r +

c2

r

)
f1, (27)

where we recall that f 1 generally might depend on r and c.

9
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4.1.3. ϕ(s) ≡ ϕ0 �= n π
2 , n ∈ Z. Under this assumption, the solution of (19) reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a1(s) = a0 − 2β0

(
1 +

c2

r2

)[
c cos

(
s√

c2 + r2

)
+

√
c2 + r2 cot (ϕ0) sin

(
s√

c2 + r2

)]

a2(s) = a0 − 2β0

(
1 +

c2

r2

)[
c cos

(
s√

c2 + r2

)
+

√
c2 + r2 tan (ϕ0) sin

(
s√

c2 + r2

)]

b(s) = b0 + 2β0

(
c +

r2

c

)
cos

(
s√

c2 + r2

)
(28a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1(s) = r

c2 + r2
sin (ϕ0)

k2(s) = r

c2 + r2
cos (ϕ0)

k3(s) = c

c2 + r2

(28b)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1(s) = cr

c2 + r2
(b0 − a0) sin (ϕ0)

F2(s) = cr

c2 + r2
(b0 − a0) cos (ϕ0)

F3(s) = c2

(c2 + r2)2
(b0 − a0) −

(
r +

c2

r

)
f,

(28c)

where f1, f2 and f 3 are the components of the load vector, as in (16), and satisfy the following
condition: ⎧⎨

⎩
f1 = f cos (ϕ0)

f2 = −f sin (ϕ0)

f3 = 0.

(28d)

Here a0, b0 and β0 are real integration constants that satisfy the conditions⎧⎪⎪⎨
⎪⎪⎩

a0 > 2β1

(
1 +

c2

r2

)
max

{√
c2 + (c2 + r2) cot2 (ϕ0),

√
c2 + (c2 + r2) tan2 (ϕ0)

}

b0 > 2 β0

(
c +

r2

c

)
.

(28e)

In this case it is important to underline that (28d) entails that the integrability of (19) is
guaranteed only if the vector �f is parallel to �N , as can be easily seen by comparing (28d) with
(13). This is indeed the case of the load vector �f described in (8a)–(8b) and (9).

Via (20) the elastic energy density is

E = a0r
2 + (3b0 − 2a0)c

2

2(c2 + r2)
2 −

(
r +

c2

r

)
f, (29)

where we recall that f generally might depend on r and c.

4.2. Constant register solution for τ = 0 and κ �= 0

If the torsion vanishes, then the central line of the helix degenerates into a circle. From
parametrization (1), we obtain that

κ = 1

r
and τ = 0. (30)

It is expedient to split this case into three subcases, depending on whether ϕ is an (even or
odd) integer multiple of π

2 or not.

10
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4.2.1. ϕ(s) ≡ π
2 + nπ, n ∈ Z. Under this assumption the solution of (19) reads as follows:

⎧⎪⎨
⎪⎩

a1(s) = r2
[
α0 + α1 cos

( s

r

)
+ α2 sin

( s

r

)
+ (−1)n+1rf2

]
a2(s) ∈ C1(R)

b(s) ∈ C1(R)

(31a)

⎧⎪⎪⎨
⎪⎪⎩

k1(s) = (−1)n

r
k2(s) = 0
k3(s) = 0

(31b)

⎧⎪⎪⎨
⎪⎪⎩

F1(s) = 0

F2(s) = (−1)n+1
[
α1 sin

( s

r

)
− α2 cos

( s

r

)]

F3(s) = −
[
α1 cos

( s

r

)
+ α2 sin

( s

r

)]
+ (−1)nrf2,

(31c)

where f1, f2 and f 3 are the components of the load vector, as in (16), f 2 is constant and f 1

and f 3 satisfy the following condition:{
f1 = 0
f3 = 0.

(31d)

We recall that the constants appearing in (31a)–(31c) must satisfy the condition

α0 + (−1)n+1rf2 >

√
α2

1 + α2
2. Furthermore, a2(s) and b(s) are arbitrary real positive smooth

functions of the arc-length s.
In this case it is important to underline that (31d) entails that the integrability of (19) is

guaranteed only if the vector �f features a single component along �N , as can be easily seen by
recalling that setting ϕ = π

2 + nπ , via (13), implies �d1 = (−1)n �B and �d2 = (−1)n+1 �N . This
is indeed the case of the load vector �f described in (8a)–(8b) and (9).

Via (20) the elastic energy density is

E = 1

2

[
α0 − α1 cos

( s

r

)
− α2 sin

( s

r

)
+ (−1)nrf2

]
, (32)

where we recall that f 2 generally might depend on r and c.

4.2.2. ϕ(s) ≡ nπ, n ∈ Z. Under this assumption, the solution of (19) reads as follows:
⎧⎪⎪⎨
⎪⎪⎩

a1(s) ∈ C1(R)

a2(s) = r2
[
α0 + α1 cos

( s

r

)
+ α2 sin

( s

r

)
+ (−1)nrf1

]

b(s) ∈ C1(R)

(33a)

⎧⎪⎨
⎪⎩

k1(s) = 0

k2(s) = (−1)n

r

k3(s) = 0

(33b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1(s) = (−1)n
[
α1 sin

( s

r

)
− α2 cos

( s

r

)]

F2(s) = 0

F3(s) = −
[
α1 cos

( s

r

)
+ α2 sin

( s

r

)]
+ (−1)n+1rf1

(33c)

11
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with the condition{
f2 = 0
f3 = 0.

(33d)

We recall that the constants appearing in (33a)–(33c) must satisfy the condition α0 +

(−1)nrf1 >

√
α2

1 + α2
2. Furthermore, a1(s) and b(s) are arbitrary real positive smooth

functions of the arc-length s.
In this case it is important to underline that (33d) entails that the integrability of (19) is

guaranteed only if the vector �f features a single component along �N , as can be easily seen
by recalling that setting ϕ = nπ , via (13), implies �d1 = (−1)n �N and �d2 = (−1)n �B. This is
indeed the case of the load vector �f described in (8a)–(8b) and (9).

Via (20) the elastic energy density is

E = 1

2

[
α0 − α1 cos

( s

r

)
− α2 sin

( s

r

)
+ (−1)n+1rf1

]
, (34)

where we recall that f 1 generally might depend on r and c.

4.2.3. ϕ(s) ≡ ϕ0 �= n π
2 , n ∈ Z. Under this assumption the solution of (19) reads as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1(s) = r2
[
α0 − α1 cos

( s

r

)
− α2 sin

( s

r

)
+ rf

]

a2(s) = r2
[
α0 − α1 cos

( s

r

)
− α2 sin

( s

r

)
+ rf

]

b(s) ∈ C1(R)

(35a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1(s) = sin (ϕ0)

r

k2(s) = cos (ϕ0)

r

k3(s) = 0

(35b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1(s) = −cos (ϕ0)
[
α1 sin

( s

r

)
− α2 cos

( s

r

)]

F2(s) = sin (ϕ0)
[
α1 sin

( s

r

)
− α2 cos

( s

r

)]

F3(s) = α1 cos
( s

r

)
+ α2 sin

( s

r

)
− rf,

(35c)

where f1, f2 and f 3 are the components of the load vector, as in (16), and satisfy the following
condition: ⎧⎨

⎩
f1 = f cos (ϕ0)

f2 = −f sin (ϕ0)

f3 = 0.

(35d)

We recall that the constants appearing in (35a)–(35c) must satisfy the condition

α0 + rf >

√
α2

1 + α2
2. Furthermore, b(s) is an arbitrary real positive smooth function of

the arc-length s.
In this case it is important to underline that (35d) entails that the integrability of (19) is

guaranteed only if the vector �f is parallel to �N , as can be easily seen by comparing (35d) with
(13). This is indeed the case of the load vector �f described in (8a)–(8b) and (9).

12
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Via (20) the elastic energy density is

E = 1

2

[
α0 + α1 cos

( s

r

)
+ α2 sin

( s

r

)
− rf

]
, (36)

where we recall that f generally might depend on r and c.

4.3. Constant register solution for τ = 0 and κ = 0

If the torsion and the curvature vanish, then the central line of the helix degenerates into a
straight line.

The explicit solution of (19) reads as follows:

⎧⎨
⎩

a1(s) ∈ C1(R)

a2(s) ∈ C1(R)

b(s) ∈ C1(R)

(37a)

⎧⎨
⎩

k1(s) = 0
k2(s) = 0
k3(s) = 0

(37b)

⎧⎨
⎩

F1(s) = 0
F2(s) = 0
F3(s) ∈ C1(R)

(37c)

with the condition⎧⎨
⎩

f1 = 0
f2 = 0
f3 = 0.

(37d)

We recall that a1(s), a2(s), b(s) and F3(s) are arbitrary real positive smooth functions of
the arc-length s.

In this case it is important to underline that (37d) entails that the integrability of (19) is
guaranteed only if the vector �f vanishes.

Formula (20) entails that the elastic energy density equals F3(s).

5. The external force behavior

It is well known that, in the absence of strong electrostatic effects, long-range interactions
related to dispersion forces tune the behavior of polymeric chains. Although they are usually
expressed by Lennard-Jones potentials, a Morse-type potential has greater flexibility and
‘softer’ boundary conditions (see [21]). We then derive the modulus of �(x), see (4), from
the following Morse-type potential:

V (x) = D0[e−α(x−x0) − 1]2 + V0, (38)

where x is the distance between two interacting points, x0 is the equilibrium distance, D0 > 0
is the so-called well depth, α > 0 is an opportune-dimensional parameter linked to the force
constant at the equilibrium and V0 = V (x0) − D0, see [22].

For such a potential, the integral in (8b) is well defined and the force derived from (38)
via (4) is

�(x) = 2αD0 e−α(x−x0)[e−α(x−x0) − 1], (39)

13
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which is strongly repulsive—though not diverging—for vanishing distance between two
interacting points of the rod.

The integral in (8b) cannot be achieved analytically in a closed form, nevertheless we
prove its convergence for c �= 0 providing an explicit evaluation of its modulus:

|F | � 2r

∫ ∞

0

∣∣∣∣1 − cos (t)

X(t)
� (X(t))

∣∣∣∣ dt

� 4αD0r

∫ ∞

0

1 − cos t

ct
e2α(x0−ct) dt

= 2 αD0r

c
e2 αx0 ln

[
1 +

1

4α2 c2

]
. (40)

Note that the last right-hand side of (40) is finite if c �= 0.
If c approaches zero, the integral in (8b) may diverge. For instance, when ϕ = π

2 , by
evaluating the limit of (25) as c → 0 we get

E = a0

2r2
+ lim

m∈N, m→∞
16 m παD0 eαx0 g(α, r, x0),

g(α, r, x0) = L−1(2αr) − I1(2αr) − eαx0 [L−1(4αr) − I1(4αr)],
(41)

which is evidently plus or minus infinity whether the bounded quantity g(α, r, x0) is strictly
positive or negative, respectively (when g(α, r, x0) = 0 then the limit of (25) as c → 0 is not
defined). We recall that in (41) L−1(x) is the Struve function L of order −1 and I1(x) is the
Bessel function I of order 1. Moreover, it is important to observe that (41) is formally different
from (32) which is an arc-length-dependent quantity; the reason of this difference lies into
the fact that setting c = 0 first and then solving the inverse problem illustrated in section 4 is
clearly not equivalent to solving equations (19) for c �= 0 and then setting c = 0.

If c approaches infinity, the energy density (25) approaches zero for fixed values of r �= 0.
If r approaches zero, the energy density (20) is always finite, but can depend on the

arc-length in the degenerate cases depicted in sections 4.2–4.3. For instance, when ϕ = π
2 , by

evaluating the limit of (25) as r → 0, we get

E = 3b0 − 2a0

2c2
− 4αD0 eαx0

[
eαx0 ln

(
1 +

1

4c2α2

)
− ln

(
1 +

1

c2α2

)]
. (42)

If r approaches infinity, the energy density (25) approaches zero for fixed values of c �= 0.
In order to discuss non-degenerate helical configurations of elastic rods as a model for

polymeric chains, it is mandatory to underline that vanishing values of c and/or r are not
physically relevant.

6. Elastic energy for non-degenerate circular helical configurations

In this section we show that, for typical values of the parameters of the Morse potential (38)
which describes the two-point intra-chain interactions appearing in a polypeptide in α-helix
configuration, the energy density can feature stationary points with respect to the radius and
pitch of the helix. Such intra-chain interactions are possibly due to the formation of different
kinds of non-bonding hydrogen bonds among non-contiguous elements of the polymeric
chain, such as the N − H · · · O = C interaction among amidic sites and/or the C H3 · · · C H3

interaction among methyl sites.
We start by discussing the energy densities determined in section 4. Thus, it is mandatory

to underline that in our analysis we implicitly constrain the elastic rod to take only circular
helical configurations, so that the stationary points given below do not represent global
equilibrium among all possible configurations.

14
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We recall that (see [17, 19]), for an isotropic homogeneous rod whose curvature and
torsion are non-vanishing, the bending stiffnesses are a1(s) = YI1 and a2(s) = YI2, and the
torsional stiffness is b(s) = μJ , where Y and μ are respectively the Young and shear moduli
(which are intrinsic characteristics of the material), while I1, I2 and J are the geometrical
momenta of inertia (which depend on the shape of the cross section of the backbone). For
the sake of simplicity, if we assume that ϕ = π

2 , then the bending stiffnesses are equal and
constant, namely a1(s) = a2(s) = a0, and the torsional stiffness is constant, namely b(s) = b0,
as displayed in (24a); therefore, the compatible cross section shapes are those which feature
I1 = I2 = I . It is well known that for a circle and for every regular polygon, the moment of
inertia I with respect to every axis through the centroid (as the principal axes) is the same. For
such shapes we get

a0 = YI and b0 = μJ. (43)

For instance, if the cross section of the backbone of the polymer is assumed to be circular
and 	 is the length of its diameter, then we have (see [19])

I = π

4
	4 and J = π

2
	4; (44a)

if the cross section is assumed to be a square and 	 is the length of its edge, then we have

I = 	4

12
and J = 	4

6
; (44b)

if the cross section is assumed to be an equilateral triangle and 	 is the length of its edge, then
we have

I =
√

3

96
	4 and J =

√
3

48
	4. (44c)

In the following, and unless otherwise specified, we mainly focus on polymers featuring a
circular cross section (44a). Let us consider the specific case of polyalanine, a homopolymer
of the simplest chiral aminoacid L-alanine. The average value of 	 for such a polypeptide is
3 × 10−10 m, see [22, 23].

Ab initio molecular dynamics simulations and force field (FFs) computations (see [24, 25])
indicate that, for the intra-chain interactions described above, values for the Morse parameters
D0, α and x0 appearing in (38) can be chosen to span from

D0 = 4.58 × 10−21 J α = 1.4 × 1010 m−1 x0 = 1.6 × 10−10 m, (45a)

which correspond to the weak H bond due to the amidic N − H · · · O = C interactions, see
[24], to

D0 = 1.13 × 10−18 J α = 1.8 × 1010 m−1 x0 = 0.8 × 10−10 m, (45b)

which correspond to the strong H bond due to the methyl C H3 · · · C H3 interactions, see [25].
Furthermore, for a polyalanine α-helix, the following elastic moduli have been computed

by atomistic simulations [26]:

Y = 2.50 × 109 J m−3 and μ = 0.91 × 109 J m−3. (46)

It is mandatory to recall here that values of the Young and shear moduli similar to those
reported in (46), as well as values of the Morse parameters similar to those reported in (45a)
and (45b), do apply for a wider class of polypeptides than the simple polyalanine molecule
herein considered. As a consequence of (46), via (43) and (44a), for a circular shape of the
backbone, the stiffnesses are

a = 1.71 × 10−29 J m and b = 1.24 × 10−29 J m, (47)
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Figure 3. Energy density E (J m−1) vs c (m) in the presence (solid) and in the absence (dashed)
of a long-range interaction (39) with D0, α and x0 as in (45a).

5. 10 10 1. 10 9 1.5 10 9 2. 10 9
3. 10 12

2.5 10 12

2. 10 12

1.5 10 12

1. 10 12

5. 10 13

0

5. 10 13

r m

E
ne

rg
y

D
en

si
ty

J
m

Figure 4. Energy density E (J m−1) vs r [m] in the presence of a long-range interaction (39) with
D0, α and x0 as in (45a).

and the typical values of radius and pitch for an α-helix are respectively

r = 0.23 × 10−9 m and p = 2πc = 0.54 × 10−9 m. (48)

As a result, by integrating numerically (25), via (38), we obtain the energy density
landscapes depicted in figures 3–6. Numerical integrations were performed through an
adaptive Gaussian quadrature algorithm [27].

Figures 3 and 5 show the energy density E vs c, with ϕ = π
2 (see (25)), a0 = a, b0 =

b, r = 0.23 × 10−9 m (see (48)) and the Morse parameters as in (45a) and (45b) respectively.
In both figures we compare the two cases corresponding to the presence and to the absence
(namely setting D0 = 0, see [10]) of the long-range interaction (38). From (47) we get a

b
< 3

2
and, as proved in [10] in the absence of long-range interactions, this condition verifies no local
minima for the energy density. Therefore, the observed local minima are uniquely due to the
presence of the intra-chain long-range interaction potential. Moreover, the fact that we observe
those minima at both the extremes of the range (45a)–(45b) suggests that one might observe
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Figure 5. Energy density E[J/m] vs c [m] in the presence (solid) and in the absence (dashed) of a
long-range interaction (39) with D0, α and x0 as in (45b).
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Figure 6. Energy density E[J/m] vs r [m] in the presence of a long-range interaction (39) with
D0, α and x0 as in (45b).

them also for all values in the range. The existence of such minima entails the existence of
stable helical configurations for the polymer folding under the assumption of fixed radius.

Figures 4 and 6 show the energy density E vs r when c = 0.86 × 10−11 m as in (48) and
the Morse parameters are as in (45a) and (45b) respectively. We recall that, as r → 0, the
energy density E has a finite limit, see (42). In figure 4, E features a local maximum and,
as r → ∞, the energy density approaches monotonically zero from above, while in figure 6,
E features first a local maximum and then a minimum before converging monotonically to
zero from below for large values of r. We recall that the maxima depicted in figures 4 and 6
represent unstable helical foldings of the polymer, while the minimum in figure 6 entails the
existence of a stable helical configuration, under the assumption of fixed pitch.

As a final remark, we discuss numerically the role played by the shape of the cross section
of the backbone of the polymeric chain on the energy density landscape. In figure 7 we show
the energy density E vs c when r = 0.23 × 10−9 m as in (48) and the Morse parameters are
as in (45b). Three different curves are presented, corresponding to three different choices of
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Figure 7. Energy density E (J m−1) vs c (m) in the presence of a long-range interaction (39) with
D0, α and x0 as in (45b) for different shapes of the cross-section of the rod: circular (dashed),
squared (solid) and triangular (point-dashed).

the cross section shape: circular, squared and triangular. Elastic rods as models for polymeric
chains, whose backbone is mapped into a polygonal cross section, seem to have lower values
of the energy density if the number of edges decreases. For instance, with the choice (45b),
the difference of the minima of the energy density between the circular and the triangular cross
sections is of the order of 1 × 10−10 J m−1.

7. Conclusions and perspectives

In the present paper we showed that the static Kirchhoff equations for an elastic rod in the
presence of an external force are integrable, indeed solvable, if the central line of the rod
is assumed to be helical and the external force is constant in modulus and directed as the
normal vector to the central line. Such an external force can be obtained by averaging a
long-range interaction between all the points of the central line for a rod of infinite length. We
established and solved an inverse problem to determine the physical parameters characterizing
the elastic properties of the rod in the case of a constant register (vanishing intrinsic twist)
once the geometrical parameters of the helix have been fixed. We postpone the study of the
case of non-vanishing intrinsic twist to future investigations. Moreover, we studied the elastic
energy densities with respect to the radius and pitch of the helix, and we showed numerically
the existence of stationary points, under the constraint of helical configurations, for plausible
choices of the values of the parameters corresponding to a real polypeptide chain. These
results were obtained from explicit analytical solutions of the (generalized) static Kirchhoff
equations, without recurring to numerical simulations in order to infer the shape of the elastic
rod. Despite the simplicity of the herein-treated model, which does not take into account
many fundamental aspects of real macromolecular system (e.g. the presence of a reasonable
solution fluid at a given temperature, or the effects of clamped extremes), we showed that a
good qualitative agreement with some expected features of a given polypeptide is observed (for
a comparison, see [12], where the authors discuss analytical and numerical results obtained
through a different model).

It is left to be studied how to deal with rods of finite length since, in that case, the finite
geometry compels the averaged force not to be constant both in modulus and direction as
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much as one considers points closer to the extremes of the rod: taking into account such end
effects seems to be an ‘elusive computation’, as already pointed out in [8]. Furthermore, in
order to model real polymeric chains, in future studies it will be mandatory to focus on the
overall energy of the elastic rod, including the presence of a fluid surrounding the rod by
introducing thermal and cavitational terms in the free energy potential, see [28, 29]. It is our
opinion that the analytical model discussed herein, when the above-mentioned physical and
chemical constraints are opportunely taken into account, can play a fundamental role in the
multiscale approach to polymers and bio-polymers, where a description at different space- and
time-scales is needed.
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